
Journal of Nuclear Materials 341 (2005) 25–30

www.elsevier.com/locate/jnucmat
Calculation of the threshold displacement energies
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Abstract

A set of ionic potentials matching exactly the crystallographic, elastic and dielectric properties of the uranium diox-

ide is established. It is further validated upon some basic thermodynamic properties as well as upon the Frenkel pairs

formation energies and the activation energies for lattice migration in UO2. The threshold displacement energies, useful

to characterise the radiation resistance of the materials, are calculated for the uranium dioxide along various crystal-

lographic directions applying the optimised force field within the sudden approximation approach.

� 2005 Elsevier B.V. All rights reserved.

PACS: 34.20.C; 71.15.D; 61.80.�x
1. Introduction

Uranium dioxide UO2 physicochemical properties

have been extensively studied both experimentally and

theoretically. The crystallographic, elastic and thermo-

dynamic properties, static and high frequency dielectric

constants, point defects formation energies, activation

energies for lattice migration are very well known today

and can be easily found in the plethoric literature [1–16].

From a theoretical point of view, this is a fairly favor-

able situation since the well known properties of this

material can be used for establishing reliable empirical

potentials [17–25] in order to perform quite relevant
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microscopic scale studies. Despite the fact that numer-

ous experimental works have been carried out in order

to investigate the behavior of uranium dioxide under

irradiation, the threshold displacement energies have

never been measured directly and have been rather de-

duced by indirect considerations which were supposed

to match the final irradiation state obtained by theoret-

ical calculations with that of the experimental observa-

tions. In fact, the very first theoretical work was done

by Soullard et al. [26,27] who established a computa-

tional code for studying single event displacement cas-

cades in UO2. They evaluated the threshold

displacement energies of oxygen and uranium, to be

roughly 20 eV and 40 eV respectively, since, according

to their calculations, these values permitted to obtain

consistent results with the experimental observations.

Since then, quite a few theoretical works, mainly based

on molecular dynamics MD simulations [28,29] have
ed.
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been done on this subject. Thus, the values established

by Soullard et al. are still used today for evaluating radi-

ation damage in UO2. However, the threshold displace-

ment energy, which is defined as the minimum energy

transferred to a lattice atom along a given crystallo-

graphic direction yielding the creation of a stable Fren-

kel defect is considered as a parameter of high

importance for quantifying the number of displaced

atoms during irradiation induced displacement cascades.

Consequently, it is worthy evaluating theoretically

the threshold displacement energies of uranium and oxy-

gen in mono-crystalline uranium dioxide. For that pur-

pose the short range interactions that may be used for

the simulations should be able of reproducing the better

possible both the UO2 physical properties and the ener-

getic pathways in the crystalline structure. Hence, we

have established a new set of inter-atomic potentials

for uranium dioxide imposing the requirement to repro-

duce not only the crystallographic, elastic and thermo-

dynamic properties but also the Frenkel pairs

formation energies as well as the activation energies

for lattice migration. The threshold displacement ener-

gies for uranium and oxygen have been calculated using

the sudden approximation (SA) method along various

crystallographic directions.
2. Short-range interaction potentials

The force field has been established by applying an

iterative method. A set of potentials is fitted upon the

experimental data of crystallographic, elastic and dielec-

tric properties of uranium dioxide and then applied to

calculate the thermodynamic properties, the Frenkel

pairs formation energies and finally the activation ener-

gies for lattice migration. If the last properties were not

reproduced well by the established potentials then a new

set was established by the fitting procedure until all the

required properties are reproduced within a convenient

precision. The GULP code [30] has been used through-

out this work.
Table 1

Short-range potential parameters for UO2 complementing Coulomb i

Interactions Analytic form

Oshell–Oshell 20908.03 exp[�r/0.129629]
Fifth-order polynomial

Third-order polynomial

229.04/r6

Oshell–Ushell 844.41 exp[�r/0.425243]

Polarizability charges and spring constants

Ocore: +1.186267 Oshell: �3.186267
Ucore: �2.8400 Ushell: +6.8400

E is in eV and r in Å.
Potentials parameters fitting is based on a least

squares refinement procedure minimizing the difference

of the squares between the experimental and the calcu-

lated values of various observables f.

Dn ¼
X

½wnfnðcalÞ � fnðexpÞ�2 ! min; ð1Þ

where wn is a weight factor for the observable fn. For

that purpose, we have used the UO2 experimental lattice

parameter a [2], the elastic matrix elements cij [13], the

bulk modulus B [2] and finally the static and high fre-

quency dielectric constants e0 [14] and e1 [15]. Previous
studies [17,21] have shown the ionic polarizability to be

an important feature of uranium dioxide yielding a very

large high-frequency dielectric constant e1 = 5.3 and
playing a direct influence on the defect formation and

migration energies. It is well known that shell-model

potentials can describe the ionic polarizability, repro-

ducing physical values for the constant e1. Hence, we
have considered here both the oxygen and uranium ions

to be polarized according to the Dick and Overhauser

model [32]. The harmonic constants KO and KU charac-

terize the interaction between the core and shell for oxy-

gen and uranium respectively. As it is usually the case in

ionic modeling of crystals, cation–cation short range

interactions are put to zero while the anion–anion and

anion–cation short-range interactions, complementing

Coulomb ones, are expressed by Buckingham potentials

composed by a Born–Mayer repulsive term and an r�6

attractive one: Eij = Aij exp[�r/qij] � Cij/r6. We have
used a fourth-order Buckingham potential to describe

the Oshell–Oshell interaction. It consists of introducing

polynomial expressions between the Born–Mayer and

the attractive term. Thus, the potential energy, supple-

menting the Coulomb one within the range 1 Å–12 Å,

is expressed by four different analytical expressions each

one being valid within a given distance interval with the

first and second derivatives continuity being ensured at

the interconnection points.

The GULP code [30] permits the iteration of all the

potential parameters {Aij,qij,Cij}, the polarisability con-
stants, KO and KU, as well as the core and shell charges
nteractions

Interval (Å)

r < 1.17

1.17 6 r < 1.62

1.62 6 r < 2.84

2.84 6 r < 12

r < 10

KO = 70.824 eV Å
�2 r < 0.8

KU = 171.556 eV Å
�2 r < 0.8



Table 2

Fitting result for the UO2 potentials given in Table 1

UO2 observables Experiment

[2,13–15]

Fitting results

(%)

a (Å) 5.468 5.468 (0.0)

C11 (10
11 dyn/cm2) 38.93 38.93 (0.0)

C12 (10
11 dyn/cm2) 11.87 11.87 (0.0)

C44 (10
11 dyn/cm2) 5.97 5.97 (0.0)

e0 24.0 24.0 (0.0)

e1 5.3 5.3 (0.0)

Bulk modulus (GPa) 209 208.94 (0.0)

Table 3

Calculated and experimental [9,13,14] values, at 300 K, for the

uranium dioxide. Vibration entropy Svib, specific heats CP, CV
and the linear thermal expansion coefficient alin

UO2 properties at 300 K Experiment [2–5] Calculated

Svib (J/mole K) 77.0 77.2

CP (J/mole K) 63.5 61.8

CV (J/mole K) 62.3a 60.5

alin (10
�6 K�1) 9.8 10.1

a Deduced from the experimental values of CP, B and a.

Temperature (Kelvin)
300 600 900 1200 1500

C
p (

J.
m

ol
-1

.K
-1

)

60

65

70

75

80

85

90

Experimental

Theoretical

Fig. 1. Comparison between experimental [9,14] and calculated

constant pressure specific heat CP with respect to the temper-

ature. At T > 1300 K the electronic effects become important

for the uranium dioxide and cannot be described by the classical

potentials.
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during the fitting procedure. The potentials established

are given in Table 1 while the corresponding fitting re-

sult, which matches exactly the experimental values of

the observables, is given in Table 2. In order to check

further the efficiency of the established potentials, we

have also calculated the thermodynamic properties, the

Frenkel defect formation energies, the activation ener-

gies for lattice migration as well as the super-ionic state

at high temperature of uranium dioxide.

3. Thermodynamic properties, defect formation energies

and lattice migration

The phonon frequencies vi can be calculated from the

eigen-values of the dynamic matrix of the system, corre-

sponding to the second derivatives Cartesian matrix of

the energy weighted by the inverse square root of the

ion masses. Thus, the partition function is obtained by:

Zvib ¼
X

k points¼20
gk

X3N
i¼1
exp½�hmi=kBT �; ð2Þ

where kB and h are Boltzmann�s and Planck�s constants
respectively. The phonon frequencies are summed here

over a grid covering 20 k symmetry-unique points across

the Brillouin zone, excluding the three translational de-

grees of freedom at the gamma point, gk being the

weight number on each grid point. The vibration entro-

py Svib at a given temperature T is obtained by the par-

tition function Zvib according to the relation:

Svib ¼ kB lnZvib þ kBT
@

@T
ðln ZvibÞ: ð3Þ

The constant pressure specific heat CP can be calcu-

lated by the well known expression:

CP ¼ T
oSvib
oT

����
P

: ð4Þ

While the constant volume specific heat CV is ob-

tained directly from the phonon spectra:

CV ¼
X3N
i¼1

kB
hvi
kBT

� �2 exp
hvi
kBT

� �

exp
hvi
kBT

� �
� 1

� �2 : ð5Þ
Finally, the linear thermal expansion coefficient alin
can be obtained [2] by the specific heat difference at con-

stant volume and constant pressure:

CP � CV ¼ a2BNVT ; ð6Þ

where B is the bulk modulus, N the Avogadro number,

V the primitive cell volume and a is the volume expan-
sion coefficient corresponding to three times the linear

one, a = 3alin.
Using the above formalism and the phonon spectra

calculated over 20 k points of the Brillouin zone we

get for the thermodynamic properties the values pre-

sented in Table 3, showing a quite satisfactory agree-

ment, within less than 3% with the experimental data.

The variation of the constant pressure specific heat

CP(T) with respect to the temperature is plotted in Fig.

1 up to 1500 K. The discrepancies for T > 1300 K are

mainly due to the electronic effects, which are very

important for UO2 and which, obviously, cannot be

taken into account by the semi-empirical models.

The defects formation energies can be obtained by

using the well known expression:



Table 4

Activation energies Eact for oxygen vacancy and uranium lattice migration, Frenkel pairs and Schottky trio formation energies in

uranium dioxide

Calc. Previous semi-empirical

values [20,24,31,38]

Experiment Ab-initio

LMTO-ASA [39,40]

Ab-initio

DFT-LDA [41]

Eact (VO) 0.6 0.30–0.694 0.51a

Eact (U
4+) 4.9 4.4–4.8b

O Frenkel 4.5 4.8–6.82 3.0–4.6c 6.7 3.9

U Frenkel 12.6 19.4 9.5d 30.6 10.7

Schottky trio 7.4 7.03–13.27 6.5 ± 0.5d 17.1 5.8

Note that activation energies quoted for uranium are affected by surface artifacts [1]. Matzke suggested a corrected value of 5.6 eV.
a Data from Refs. [7–12].
b [1,6,8–11].
c [1,16,37].
d From Ref. [1].

Fig. 2. Evolution of the oxygen ions mean square displace-

ments (MSD) with respect to time calculated by molecular

dynamics simulations in the (NPT) ensemble at 2400 K,

showing the super-ionic conductivity of solid UO2.
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EðdefectÞ ¼ Erelaxedðbulkþ defectÞ
� Erelaxedðperfect bulkÞ þ DE1; ð7Þ

where DE1 is a correction energy for the missing species

at infinite distance from the crystal. For individual ion

defects the last quantity is zero as the potentials are de-

fined with respect to zero energy at infinity. It is also the

case for Frenkel pair defects, as both the vacancy and

the interstitial are present in the bulk. However, for

Schottky defects DE1 is the lattice energy corresponding

to the missing molecule when it is present in the bulk.

We have calculated the energy for the oxygen and

uranium Frenkel pairs formation as well as that of an

UO2 Schottky defect using super cells of 192 ions with

periodic boundary conditions and applying the rational

function optimization procedure (RFO) [30,33] for min-

imizing the energy of the system. These values are given

in Table 4 and they are compared to the experimental

values showing a quite good agreement. For compar-

ison, previous semi-empirical and ab-initio calculations

are also reported in the same table.

The classical Mott–Littleton approximation (MLA)

[34] with the eigen vector following method [33] have

been applied here to calculate the activation energies

for lattice migration in uranium dioxide. We recall that

the MLA method simply consists of considering two

concentric spheres around the defect(s) center. In the

inner one the interactions are treated explicitly and ions

are allowed to relax fully. In the region between the first

and the second sphere the species are weakly perturbed

leading only to harmonic relaxation, while in the outer

regions ions interact with any net charge in the defect

as a dielectric medium. By this way, choosing sufficiently

high values for the spheres radius (12 Å for the inner and

20 Å for the outer) the defect may be considered as in an

infinite perfect crystal. Within the eigen vector following

method, the investigation of the first order saddle point

research is carried out by checking systematically the

nature of the eigen-values of the hessian, the energy
second derivatives matrix. The obtained values, given

in Table 4, are also in good agreement with the experi-

mental results.

As a final test of the force field efficiency to reproduce

the energetic path ways in the crystal structure we have

carried out shell model molecular dynamic simulations

at high temperature in order to investigate whether it

can reproduce the super ionic state of UO2 characterized

by the high mobility of the oxygen ions with respect to

the uranium ones. We have used a super cell with 1296

ions in the NPT ensemble at T = 2400 K and the mean

square displacements (MSD) for both uranium and oxy-

gen ions have been obtained by the classical formalism:

ðMSDÞU;OðtÞjT ¼ 1

NU;O

XNU;O
i¼1

hrU;Oðt þ dtÞ � rU;OðtÞi2: ð8Þ

In order to ensure that there is no energy transfer be-

tween the shell vibrations and the real modes, according

to the finite mass algorithm implemented in GULP [30],



Table 5

Threshold displacement energies in UO2 calculated using the sudden approximation method within the Mott–Littleton approach

[uvw] [100] [110] [130] [150] [214] [313] [141] [232]

Ed[O] (eV) – 16 28 – 21 – 22 18

Ed[U] (eV) 52 (35) 85 (51) 46 44 79 43 55 74

The values in parenthesis come from Van Brutzel et al. [28]. The mean values estimated by Soullard et al. [8,49] are Ed[O] 
 20 eV,
Ed[U] 
 40 eV.
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the time step for the integration of Newton�s equations
of motion was set to dt = 0.1 fs. The calculated MSDs
are given in Fig. 2 and compare quite satisfactorily with

previous calculations of the super ionic state of uranium

dioxide [21,35,36].
4. Threshold displacement energies

The threshold displacement energies Ed may give in-

sight on the response of a material to the pka (primary

knock-on atom) ballistic propagation by providing an

estimation of the number of displaced atoms produced

during the displacement cascades. The Ed may be calcu-

lated either by using molecular dynamics (MD) or by

applying the sudden approximation (SA) [42] within

the MLA [34]. In the MD method [43], a definite

momentum is conferred to the sub-lattice in a given crys-

tallographic direction [uvw]. After an evolution of a few

picoseconds, 10–50 ps, the system is examined to deter-

mine whether the sub-lattice is permanently displaced

or not. However, during the pka collision event such a

process occurs in a time interval much shorter than that

needed for phonons to relax the lattice and consequently

it may be assumed that during the collision of the sub-

lattice with the pka the vibration motion is frozen. This

is the basis of the SA method, which does not take into

account the dynamic effect of the pka. In the SA meth-

od, only static energy calculations are performed. The

pka is displaced in a given crystallographic direction

[uvw] calculating at each position the total energy of

the un-relaxed system. The Ed is obtained by the differ-

ence between the minimum energy of the un-relaxed

configuration and that of the perfect bulk provided that

the ion will occupy a stable interstitial position after

relaxation of the given configuration. Thus, since the

SA method is considerably less computationally expen-

sive than MD, while at the same time equally reliable

[44–46], it has been applied here for the Ed calculations

in uranium dioxide using the above established poten-

tials. For avoiding complications due to eventual

meta-stable states during relaxation, the RFO minimiza-

tion procedure [33] in the MLA framework has been

applied.

As it is well known, the Ed strongly depends on the

crystallographic direction [uvw] along which the sub-
lattice is displaced. Consequently, eight characteristic

crystallographic directions have been considered in

UO2 and the results are given in Table 5. The results

for the oxygen compare well with the value estimated

previously by Soullard et al. [26,27], that is approxi-

mately Ed[O] 
 20 eV. Conversely, for the uranium the
calculations show that the mean threshold displace-

ment energy is higher than the mean value estimated

by Soullard et al., being rather close to Ed[U] 
 50 eV.
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